NMDA-induced striatal brain damage and time-dependence reliability of thionin staining in rats.
نویسندگان
چکیده
Excitotoxic neuronal death induced by intracerebral injection of NMDA is a widely used model for investigating the potentially neuroprotective action of pharmacological agents against brain insults involving excitotoxic processes. Surprisingly, the time-course of NMDA-induced brain damage yet has not been investigated in the rat. Answering this question clearly needs to be assessed, given that the validity of preclinical neuroprotection studies requires to be insured that brain damage has reached a plateau that corresponds to the maximal extension of neuronal death at the time the brain is removed for histological analysis. Here, we investigated the time-course of neuronal death and the time-dependence validity of thionin coloration in rats that were given an intrastriatal injection of NMDA of 50 nmol or 70 nmol. Our results show that, whatever the dose used, NMDA-induced brain damage reaches its maximal value 24-48 h after the insult. They further indicate that the volume values of brain damage as estimated by thionin coloration constitute reliable data when the brain is removed up to 48 h after injection of NMDA. However, if the brain is removed more than 48 h after the excitotoxic insult onset, there is no alternative of using other techniques, such as immunochemical or neuroimaging techniques.
منابع مشابه
تاثیر نانوذرات فولرن بر ضایعه مغز و تغییرات آسیبشناختی طی ایسکمی موضعی و گذرای مغز در موش صحرایی
Background & Aims: According to the recent studies, fullerene nanoparticles have a potent scavenging property for free radicals in biological environments. Since reactive oxygen species (ROS) is a fundamental mechanism of brain damage in stroke, we aimed to evaluate the neuroprotective effects of fullerene nanoparticles on ischemia-induced brain injuries in experimental model of stroke...
متن کاملBlockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats
Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor b...
متن کاملNeuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat
Objective(s): Some histopathological alterations take place in the ischemic regions following brain ischemia. Recent studies have demonstrated some neuroprotective roles of crocin in different models of experimental cerebral ischemia. Here, we investigated the probable neuroprotective effects of crocin on the brain infarction and histopathological changes after transient model of focal cerebral...
متن کاملL-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملInteraction of aquaporin 4 and N-methyl-D-aspartate NMDA receptor 1 in traumatic brain injury of rats
Objective(s): -methyl-D-aspartate NMDA receptor (NMDAR) and aquaporin 4 (AQP4) are involved in the molecular cascade of edema after traumatic brain injury (TBI) and are potential targets of studies in pharmacology and medicine. However, their association and interactions are still unknown.Materials and Methods: We established a rat TBI model in this study. The cellular distribution patterns of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 168 2 شماره
صفحات -
تاریخ انتشار 2008